
Dynamic Taint Propagation

Jacob West

Manager, Security Research

jacob@fortify.com

Overview

• Motivation

• Dynamic taint propagation

• Sources of inaccuracy

• Integrating with QA

• Related work

• Parting thoughts

MOTIVATION

Existential Quantification

“there exists”

There exists

a vulnerability

(again).

Universal Quantification

“for all”

For all bad things that

might happen,

the program is safe.

Security vs. Software Development

Software Development

Security

Security vs. Software Development

Software Development

Security

Programmers Testers

Are you going to give me Yet Another Lecture

About Static Analysis (YALASA)?

• No

• Focus on QA

• Using static analysis requires understanding code

Team Sizes at Microsoft

QA Testers vs. Security Testers

Functional Testers Security Testers

Know the program. Know security.

Need high functional

coverage.

Need to find at least

one vulnerability.

Lots of time and

resources

(comparatively).

Often arrive at the

party late and are

asked to leave early.

Typical Software Testing

Program

Under Test

Typical Security Testing

Program

Under Test

x x

Clear indication

of a vulnerabilityTest case to prove it.

Fault Injection Failings

• Bad input derails normal program flow

• Cannot mutate functional tests and retain coverage

Add

to cart

Enter

Address

Enter

CC

Input Input Input

Fault Injection Failings

• Result: bad test coverage

• Result: missed vulnerabilities

Add

to cart

Enter

Address

Enter

CC

Input Input Input

Problem Summary

• QA has, security team lacks:

– Good test coverage

– Time and resources

• Security team has, QA lacks:

– Security clue

Involve QA in Security

• Ease of use

– Favor false negatives over false positives

– Expect security team to test too

• Leverage existing QA tests

– Achieve high coverage

– Must be transformed into security tests

DYNAMIC TAINT

PROPAGATION

Dynamic Taint Propagation

• Follow untrusted data and identify points where they are misused

Example: SQL Injection

...

user = request.getParameter("user");

try {

sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";

stmt.executeQuery(sql);

}

...

Tracking Taint

• Associate taint marker with untrusted input as it enters the
program

• Propagate markers when string
values are copied or concatenated

• Report vulnerabilities when tainted strings are passed to sensitive
sinks

Java: Foundation

• Add taint storage to java.lang.String

Length Body

Length Taint Body

Java: Foundation

• StringBuilder and StringBuffer propagate taint markers
appropriately

Tainted Tainted+ = Tainted

Untainted + = TaintedTainted

Untainted + = UntaintedUntainted

Java: Sources

• Instrument methods that introduce input to set taint markers,
such as:

– HttpServletRequest.getParameter()

– PreparedStatement.executeQuery()

– FileReader.read()

– System.getenv()

– ...

Java: Sinks

• Instrument sensitive methods to check for taint marker before
executing, such as:

– Statement.executeQuery()

– JspWriter.print()

– new File()

– Runtime.exec()

– ...

Example: SQL Injection

user = request.getParameter("user");

try {

sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";

stmt.executeQuery(sql);

}

TaintUtil.setTaint(user, 1);

TaintUtil.setTaint(sql,user.getTaint());

TaintUtil.checkTaint(sql);

Results Overview

Security Coverage

SQL Injection Issue

Source

Sink

Severity Category URL

Critical SQL Injection
/splc/listMyItems.do

Class Line
com.order.splc.ItemService

196

Query Stack Trace

select * from item where

item name = „adam„ and

...

java.lang.Throwable at

StackTrace$FirstNested$SecondNested.

<init>(StackTrace.java:267) at

StackTrace$FirstNested.

<init>(StackTrace.java:256) at StackTrace.

<init>(StackTrace.java:246) at StackTrace.

main(StackTrace.java:70)

Where is the Problem?

Instrumentation

• Instrument JRE classes once

• Two ways to instrument program:

– Compile-time

• Rewrite the program's class files on disk

– Runtime

• Augment class loader to rewrite program

Aspect-Oriented Programming

• Express cross-cutting concerns independently from logic
(aspects)

• Open source frameworks

– AspectJ (Java)

– AspectDNG (.NET)

• Could build home-brew instrumentation on top of bytecode library
(BCEL, ASM)

Example

public aspect SQLInjectionCore extends ... {

//Statement

pointcut sqlInjectionStatement(String sql):

(call(ResultSet Statement

+.executeQuery(String)) && args(sql))

...

}

Instrument Inside or Outside?

• Inside function body

– Lower instrumentation cost

• Outside function call

– Lower runtime cost / better reporting

Types of Taint

• Track distinct sources of untrusted input

– Report XSS on data from the Web or database, but not from the file
system

• Distinguish between different sources when reporting
vulnerabilities

– Prioritize remotely exploitable vulnerabilites

Java: Foundation – Round 2

• Add taint storage and source information to java.lang.String
storage

Length Taint

Length Taint Sourc

e

Body

Body

Writing Rules

• Identifying the right methods is critical

– Missing just one source or sink can be fatal

• Leverage experience from static analysis

– Knowledge of security-relevant APIs

SOURCES OF INACCURACY

Going Wrong

Types of Inaccuracy

• False positives: erroneous bug reports

– Painful for tool user

• False negatives: unreported bugs

– Uh oh

False Positives: Unrecognized Input Validation

user = request.getParameter("user");

if (!InputUtil.alphaOnly(user)) {

return false;

}

try {

sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";

stmt.executeQuery(sql);

}

False Positives: Impossible Ctl Flow Paths

• Paths that regular data can take that malicious data cannot take

• Solution: cleanse rules

– Remove taint when String is input to a regular expression,
compared to static string, etc

Countering False Positives: Bug Verification

• Training wheels for security testers

• Show which inputs to attack

• Suggest attack data

• Monitor call sites to determine if attack succeeds

False Negatives

• Taint can go where we cannot follow

– String decomposition

– Native code

– Written to file or database and read back

• Bad cleanse rules

• Poor test coverage

False Negatives: String Decomposition

StringBuffer sb = new StringBuffer();

for (int i=0; i<tainted.length(); i++){

sb.append(tainted.charAt(i));

}

String untainted = sb.toString();

return untainted;

False Negatives: Insufficient Input Validation

user = request.getParameter("user");

if (!InputUtil.alphaOnly(user)) {

return false;

}

try {

sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";

stmt.executeQuery(sql);

}

False Negatives: Poor Test Coverage

• Only looks at paths that are executed

• Bad QA Testing == Bad Security Testing

INTEGRATING WITH QA

Practical Considerations

In Practice

• Deployment may involve more or less involvement from central
security team

Central Security Quality Assurance

Deployment Activities

Central Security Quality Assurance

Instrumentation

Functional testing

Triage and Verification

Reporting bugs

Instrumentation

• Either QA or Security

• Key considerations

– Cover program behavior

– Cover security threats

Functional Testing

• QA

• Key considerations

– Maximize coverage (existing goal)

– Security knowledge not required

Triage and Verification

• Either QA or Security

• Key considerations

– Understand issues in program context

– Security knowledge

• Hand-holding to create "exploits"

• Different bugs to different auditors

• Targeted training

Reporting Bugs

• Either QA or Security

• Key considerations

– Bug reporting conventions / protocols

– Solid remediation advice

RELATED WORK

Other People’s Business

Related Work

• Perl

• Taint propagation for Java

• Constraint propagation for C

• Fine-grained taint propagation for C

• Taint propagation for PHP

Perl

#!/usr/bin/perl –T

my $arg=shift;

system($arg);

> Insecure $ENV{PATH }

Perl

#!/usr/bin/perl –T

my $arg=shift;

$ENV{PATH} = "/bin";

system($arg);

> Insecure dependency in system

while running with -T switch

Perl

• Automatically removes taint when string is used in regex

• Meant for active defense, not bug finding, so error messages are
less than ideal

Taint Propagation for Java

• Haldar, Chandra, Franz (UC Irvine) ACSAC ‘05

• Taints Java String objects

• Active protection, not bug detection

• Notion of taint flags, but no impl

Constraint Propagation for C

• Larsen and Austin (U Michigan) USENIX ‘03

• Keep track of symbolic constraints on input while program is
running

• Spot bugs where input is under-constrained

• Found multiple bugs in OpenSSH

Constraint Propagation for C

unsigned int x;

int array[5];

scanf(“%d”, &x);

if (x > 4) die();

x++;

array[x]= 0;

x = 2

x = 2

x = 3

OK

0 ≤ x ≤ ∞

0 ≤ x ≤ 4

0 ≤ x ≤ 5

ERROR!

Concrete

ExecutionCode
Symbolic

Execution

Fine-grained Taint Propagation

• Xu, Bhatkar, Sekar (Stony Brook), USENIX ‘06

• Keep explicit taint state for every byte in the program

• Requires large chunk of program address space

• Clever optimizations make performance penalty bearable in
many cases

Fine-grained Taint Propagation

Program address space

00000000

FFFFFFFF

read(f, x, len);

Taint map

memcpy(y, x, len);

Fine-grained Taint Propagation

• Can detect most injection attacks

– Buffer overflow, format string attacks, SQL injection, command
injection

• Works for interpreted languages with native interpreters (PHP).

PHP

• Easier to do fine-grained analysis

– all program data represented with native data structures

• Augment interpreter to propagate taint

• Small performance penalty

• Core GRASP

• Our vote: build it into the std interpreter

Static Analysis (YALASA)

• Advantage

– can simulate execution of all possible paths

• Disadvantage

– necessarily less precise

– does not know which paths are likely and which are unlikely

SUMMARY

Conclusions

• Security is coming to QA!

• Lessons from security in development

– Target process steps at strengths

– Designs tools for the right audience

– Use targeted training to bolster capabilities

QUESTIONS?
Jacob West

jacob@fortify.com

